Answer:
Option B,D
Explanation:
Resistance of initially given kettle3
$R=\rho\frac{1}{A}=\rho$
$\frac{L}{\pi(d/2)^{2}}=\frac{4\rho L}{\pi d^{2}}$
Power , $P=\frac{V^{2}}{R}$
or $P\propto\frac{1}{R}$
Resistance of two replaced kettles
$R_{1}=\frac{\rho L}{\pi d^{2}}$
and
$R_{2}=\frac{\rho L}{\pi d^{2}}$
So $R_{1}=R_{2}=\frac{R}{4}$
if wires are in parallel then equivalent resistanece
$R_{p}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}=\frac{R}{8}$
Then power Pp=8p (as $P\propto\frac{1}{R}$]
So, it will take 0.5 minute
(as H=Pt or $t=\frac{H}{p}$ or $t\propto\frac{1}{p}$ )
if wires are in series then equivalent resistanece
RS=R1+R2=R/2
tthen power Ps= 2P
So, it will take 2 minutes.